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The exciton-exciton effective scattering which rules the time evolution of two excitons is studied as a
function of initial momentum difference, scattering angle, and electron-to-hole mass ratio. We show that this
effective scattering can collapse for energy-conserving configurations provided that the difference between the
two initial exciton momenta is larger than a threshold value. Sizeable scatterings then exist in the forward
direction only. We even find that, for an electron-to-hole mass ratio close to 1/2, the exciton-exciton effective
scattering stays close to zero in all directions when the difference between the initial exciton momenta has a
very specific value. This unexpected but quite remarkable collapse comes from tricky compensation between
direct and exchange Coulomb processes which originates from the fundamental undistinguishability of the
exciton fermionic components.
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I. INTRODUCTION

It is now commonly accepted that the composite boson
nature of excitons plays a key role in their many-body phys-
ics. The undistinguishability of the two carriers from which
excitons are constructed leads to all kinds of elaborate ex-
change processes which can hardly be handled within a naive
bosonic framework.

These exchange processes enter exciton-exciton interac-
tions which are known to be the main source of nonlinearity
in optical properties of semiconductors. Among them, we
can cite stimulated scattering,1 polarization change,2

bistable,3 and multistable4 behaviors and exciton spin
relaxation.5

Exchange between indistinguishable quantum particles
has also been shown to play a fundamental role in the phys-
ics of Bose-Einstein condensation.6 Interest of this argument
is renewed by recent observations of polariton
condensates,7,8 polaritons being mixed states of one exciton
and one photon. In pioneering experiments9 addressed to
fluid propagation of a coherent polariton gas,10,11 the forma-
tion of vortices12 has just been evidenced. It is however
worth noting that, although theoretically predicted much
longer ago,13,14 the experimental observation of Bose-
Einstein condensation of a pure exciton gas remains a
challenge,15,16 in spite of very many different attempts.17–21

Possible reason for not observing exciton Bose-Einstein con-
densation can actually be due to the fact that excitons must
condense into a dark state.22 Here too, carrier exchanges play
a key role since exchange between two opposite spin-bright
excitons produce two opposite spin-dark excitons. A correct
handling of the exciton composite nature thus is a request,
not only from the theoretical point of view but also to cor-
rectly understand the experimental data.

One of the most drastic mathematical difference between
elementary bosons and composite bosons made of two free
fermions with momenta �ke ,kh�, as the Wannier excitons, is
the fact that the prefactor in the N-particle closure relation is
�1 /N!�2 when the particle composite nature is kept while it is
�1 /N!� only when these particles are replaced by elementary

bosons.23,24 This prefactor difference proves that the formal
replacement of Wannier excitons by elementary bosons is a
dream, even in the extreme dilute limit of just N=2 excitons
because all sum rules which result from closure relation, are
going to be different, whatever the exciton-exciton effective
scatterings.

By contrast, it is worth noting that the closure relation for
Frenkel excitons,24–27 which are made of electron-hole pairs
localized on the same ion site, has the same �1 /N!� prefactor
as the one of elementary bosons. The reason is that, instead
of two degrees of freedom �ke ,kh�, Frenkel excitons have
one only: the ion site n.

From a mathematical point of view, the composite nature
of particles constructed on two free fermions makes the ex-
citon basis for N-pair states overcomplete—except for N=1.
As a mere consequence, the N-Wannier-exciton states are not
orthogonal. While a nonorthogonal basis is rather easy to
handle, the intrinsic overcompleteness of the Wannier-
exciton state basis cannot be eliminated in a self-consistent
way. This makes all attempts28,29 to work with an orthogo-
nalized exciton state set, doomed to failure because the dif-
ficulty is not so much to find a procedure to orthogonalize
the states but to reduce their number consistently. In the fol-
lowing, we will restrict to Wannier excitons since those are
the ones for which the composite-boson nature shows up the
most dramatically.

Having, on the one hand, understood the intrinsic diffi-
culty linked to the overcompleteness of N-pair states when
written in terms of exciton operators, being, on the other
hand, fully convinced that these exciton states constitute the
relevant basis30–32 for a proper description of many-body ef-
fects in a dilute system of electron-hole pairs, we have re-
cently constructed a formalism33 which allows us to handle
this overcompleteness in an exact way. The conceptual dif-
ference between our formalism and the Green’s function for-
malism developed long ago for elementary quantum particles
lies in the fact that this composite boson formalism uses an
operator algebra based on commutators between exciton cre-
ation operators34 while the Green’s function formalism relies
on scalars only.
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The link between the overcompleteness of exciton states
and the exciton composite nature is evidenced through the
relation

Bi
†Bj

† = − �
mn

�� n j

m i
�Bm

† Bn
† �1�

which comes from the two different ways to associate two
electrons and two holes into two Wannier excitons. Bi

† is the
creation operator for exciton i having Ki as center-of-mass
momentum and �i as relative motion index. The 2�2 Pauli
scattering �� n j

m i �, shown in Fig. 1, describes fermion ex-
change between two excitons in states �i , j� in the absence of
fermion interaction. The real difficulty with composite exci-
tons is to produce a formalism unchanged with respect to the
above identity. Our composite-boson many-body theory33

does it in an exact self-consistent way.
As �� n j

m i � in Eq. �1� is a dimensionless quantity, such pure
exchange scatterings cannot appear alone in effective scatter-
ings ruling the time evolution of two excitons because these
effective scatterings must be energylike quantities. However,
when mixed with Coulomb process, these carrier exchanges,
which come from the intrinsic undistinguishablity of the ex-
citon fermionic components, become crucial because they
readily lead to six different energylike scatterings between
two excitons. These depend on how the carriers of the two
excitons are associated in the “in” and “out” states �i , j� and
�m ,n�. The resulting six different scatterings are shown in
Figs. 2 and 3. In the direct Coulomb scattering �dir� n j

m i �,
shown in Fig. 2�a�, the excitons m and i are made with the
same carriers while in �dir� m j

n i � obtained by a �m ,n� permu-
tation, their two carriers are different so that �dir� m j

n i � can be
seen as a direct Coulomb scattering followed by two Pauli

scatterings for carrier exchange in the absence of carrier in-
teraction �see Fig. 2�b��. The direct Coulomb scattering
�dir� n j

m i � is given by33

�dir� n j
m i� =� 	dr
�Ve1e2

+ Vh1h2
− Ve1h2

− Ve2h1
� � �m�re1

,rh1


��n�re2
,rh2

�rh2
,re2

�j�rh1
,re1

�i . �2�

�rh1
,re1

� i is the wave function of an exciton in state i, its
electron being located at re1

and its hole at rh1
. Coulomb

interaction between two electrons reads Ve1e2
=e2 / �re1

−re2
�

and similarly for the other Coulomb terms. The above ex-
pression of �dir� n j

m i � visually follows from the diagrammatic
representation of Fig. 2�a�.

In addition to direct Coulomb scatterings, two excitons
can also have exchange Coulomb scatterings. In �in� n j

m i � and
�out� n j

m i �, the excitons m and i have the same electron but a
different hole while in �in� m j

n i � and �out� m j
n i � obtained from a

�m ,n� permutation, they have the same hole but a different
electron. These exchange Coulomb scatterings result from a
succession of direct Coulomb scattering and Pauli scattering
for carrier exchange. Figure 3�a� shows that �in� n j

m i � reads as
�dir� n j

m i � with �rh1
,rh2

� exchanged in the �m ,n� wave func-
tions.

It turns out that, as briefly rederived below, �out in which
Coulomb interaction takes place after carrier exchange, does
not enter the effective scattering ruling the time evolution of

FIG. 1. Pauli scattering �� n j
m i � for fermion exchange between

two excitons starting in in states �i , j� and ending in out states
�m ,n�. Electrons are represented by solid lines and holes by dashed
lines.

FIG. 2. �a� Direct interaction scatterings between two excitons
starting in in states �i , j� and ending in out states �m ,n� for carrier
interaction in the absence of carrier exchange. �b� A �m ,n� permu-
tation can be seen as the result of a double carrier exchange.

FIG. 3. Coulomb exchange scatterings in �in, the Coulomb processes take place between the in excitons while in �out they take place
between the out excitons. These exchange Coulomb scatterings can be seen as a succession of a direct Coulomb scattering and a Pauli
scattering for carrier exchange in the absence of carrier interaction.
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two excitons.35,36 This is due to a very fundamental reason
linked to symmetry breaking in the evolution toward positive
time. It however is of interest to note that, as physically
expected, a symmetry between these two exchange Coulomb
scatterings exists in the large time limit: indeed, we do
have33

�in� n j

m i
� − �out� n j

m i
� = �Em + En − Ei − Ej��� n j

m i
� ,

�3�

where Ei is the i exciton energy so that the two exchange
Coulomb scatterings are equal for energy-conserving pro-
cesses, i.e., when time reversal is expected.

Even if �out does not enter the effective scattering ruling
the time evolution of two excitons, we are nevertheless left
with four different energylike quantities. Being equally rel-
evant since they only differ by the intrinsic fermion undis-
tinguishability, these four scatterings must appear on equal
footing in the effective scattering ruling the time evolution of
two excitons. Consequently, this effective scattering must
read as a linear combination of four terms, each of these four
terms containing two Coulomb attractions and two Coulomb
repulsions. Such a complex structure is a direct consequence
of the particle composite nature. Some tricky compensations
can then take place in this linear combination, to possibly
end with an effective scattering, either very close to zero, or
even exactly equal to zero for some specific configurations;
the corresponding initial state can then be seen as “frozen” at
first order in Coulomb processes.

In a previous work,36 we found that the effective scatter-
ing of two excitons having same initial momentum cancels
for a finite value of the momentum transfer. This particular
transfer however has no physical relevance because it does
not correspond to process in which energy is conserved. Be-
ing still puzzled by this somewhat unexpected cancellation,
we wanted to reconsider the problem more in details in order
to see if the exciton-exciton effective scattering which rules
the time evolution of two excitons can cancel for some
energy-conserving configurations. This is the purpose of the
present work.

We here show that, indeed, there are some configurations
in which the effective scattering ruling the time evolution of
two excitons does cancel while energy is conserved. As a
result, the corresponding scattering configurations are forbid-
den at first order in the interaction. For some electron-to-hole
mass ratio close to 1/2, the effective exciton-exciton scatter-
ing can even stay very close to zero in all directions provided
that the initial momentum difference has a very specific
value. This particular initial configuration then appears as
somewhat magic because excitons do not scatter through
first-order Coulomb process. Such a cancellation however
requires initial exciton momenta above a threshold value
which is far larger than the typical photon momenta, i.e., the
momenta of the photocreated excitons. Excitons in their rela-
tive motion ground state with a larger kinetic energy can
however be formed through collisions between excited state
excitons resulting from photon excitation above the absorp-
tion edge. However, independently from its possible obser-

vation, it is of importance to understand that the exciton-
exciton effective scattering can collapse as a result of the
exciton composite nature. To reveal its existence thus consti-
tutes a relevant part of the overall understanding of exciton-
exciton interaction.

The present paper is organized as follows: in Sec. II, we
construct the effective scattering which rules the time evolu-
tion of two excitons as imposed by the particle quantum
nature. In order to better grasp the importance of the
fermion/boson nature of the particles as well as the conse-
quence of fermionic components in this effective scattering,
we here briefly rederive the time evolution of two elementary
fermions, two elementary bosons, and two Wannier excitons.
This allows us to evidence that a possible collapse of the
effective scattering is a fundamental property of elementary
fermions, this collapse appearing above a threshold only in
the case of composite bosons made of two fermions.

In Sec. III, we study the possible cancellation of this ef-
fective exciton-exciton scattering for energy conserving con-
figurations. To this end, we perform a numerical calculation
of the in exchange Coulomb scattering appearing in this ef-
fective scattering in the most general case, i.e., for initial
excitons having different momenta and arbitrary mass ratio.
We then restrict to energy-conserving configurations and
study the dependence of the effective scattering on exciton
momentum difference, scattering angle, and electron-to-hole
mass ratio. We pay particular attention to the magic configu-
ration in which the effective scattering stays close to zero in
all directions. In Sec. IV, we conclude.

II. EFFECTIVE SCATTERING FOR THE TIME
EVOLUTION OF TWO QUANTUM PARTICLES

A. Relevant coordinates

In order to analyze the exciton momentum configuration
possibly leading to a cancellation of the exciton effective
scattering, we will, for simplicity, restrict to two-dimensional
�2D� scatterings in which the excitons stay in their relative
motion ground state, i.e., processes in which all the relative
motion indices � are equal to �0. This restriction requires two
conditions to be met: �1� The quantum well should be narrow
enough to possibly consider one confined level only.�2� The
exciton momenta, P, should be small enough to avoid scat-
tering toward unbound electron-hole pairs. This essentially
imposes an exciton kinetic energy smaller than the 2D bind-
ing energy, namely, P2 /2M �4 /2�aX

2 , where M =me+mh is
the exciton center-of-mass mass, �−1=me

−1+mh
−1 the inverse

exciton relative motion mass, and aX the three-dimensional

�3D� exciton Bohr radius. For P̃=aXP, this condition reads

P̃�2�1+�� /��. It is shown in Fig. 4 as a function of the
mass ratio �=me /mh.

Also for simplicity, we will not here consider the exciton
spin degrees of freedom: this physically corresponds to take
the electrons �holes� of the two excitons with same spin.

Since the total center-of-mass momentum 2K of two ex-
citons is conserved in a scattering process, we are led to
write the center-of-mass momenta of the two initial excitons
as Ki=K+P and K j =K−P while the ones of the two final
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excitons are written as Km=K+P� and Kn=K−P� �see Fig.
5�a��. As physical results cannot depend on frame momen-
tum, we can, without any loss of generality, set K equal to
zero. This leads us to rewrite the effective scattering for the
configuration of interest as, �see Fig. 6�,

�eff� n j

m i
� � �eff�− P� − P

P� P
� . �4�

It will also appear as convenient to introduce the two
momentum transfers �Q ,Q�� of this scattering process.
These are defined as

P + Q = P� P + Q� = − P� �5�

due to carrier undistinguishability, exciton with initial mo-
mentum P can as well end with the final momentum P� or
−P�, which corresponds to change Q into Q� �see Fig. 5�b��.

Since Q=P�−P while Q�=−P�−P, these momentum
transfers are such that Q=Q� for P .P�=0. We can also note
that, for scatterings staying within the same exciton

relative motion subspace, i.e., for excitons all having the
same relative motion index �0, energy conservation imposes
�K+P�2+ �K−P�2= �K+P��2+ �K−P��2, i.e., P= P�: the
scattered momentum then evolves on a radius P circle. This
P= P� condition also reads Q .Q�=0. As Q+Q�=−2P, the
condition Q .Q�=0 implies Q2+Q�2=4P2. This shows that,
for a given P, the final states having the energy of the initial
state, are fully determined by the scattering angle 	 between
P and P�.

As we are mainly interested in energy-conserving pro-
cesses, we will ultimately study the effective scattering
�eff� −P� −P

P� P � of two excitons as a function of the scattering
angle 	 and half the initial exciton momentum difference
P= �Ki−K j� /2, for various electron-to-hole mass ratios.

B. Effective scattering for elementary particles

To better grasp the importance of the particle composite
nature and to relate the possible collapse of the effective
2�2 scattering to the particle fermionic/bosonic nature, let
us first consider two elementary quantum particles having
initial momenta �P ,−P� and final momenta �P� ,−P�� in the
center-of-mass frame �K=0�. The time evolution of the ini-
tial state �P ,−P� is given by

�
t = e−iHtCP
†C−P

† �v , �6�

where CP
† creates the elementary particle of interest with mo-

mentum P. Depending on the particle quantum nature, these
operators are such that

CP1
CP2

† + �CP2

† CP1
= �P2,P1

�7�

with �=1 for fermions and �=−1 for bosons. The above
equation leads to �v�C−P�CP�CP

†C−P
† �v=�P�,P+��P�,−P.

The simplest way to calculate �
t is to use the integral
representation of the exponential. For t0, it reads

e−iHt = �
−�

+� dx

�− 2i��
e−it�x+iO+�

x + iO+ − H
, �8�

where O+ is an arbitrary positive constant. The probability to
go from �P ,−P� to �P� ,−P�� is thus given by

�v�C−P�CP�e
−iHtCP

†C−P
† �v

= �
−�

+� dx

�− 2i��
e−it�x+iO+��v�C−P�CP�

1

x + iO+ − H
CP

†C−P
† �v .

�9�

To go further and calculate the matrix element in this inte-
gral, we use the following identity valid for H=H0+V, this
identity being the key for correlation effects with elementary
quantum particles,

FIG. 4. Exciton momenta in 3D Bohr radius unit P̃=aXP, for
which the exciton kinetic energy is equal to its binding energy, as a

function of mass ratio �=
me

mh
.

FIG. 5. �a� In the laboratory frame, the in excitons with mo-
menta Ki=K+P and K j =K−P transform into out excitons with
momenta Km=K+P� and Kn=K−P�. �b� In the center-of-mass
frame, which corresponds to set K=0, these excitons have momenta
�P ,−P� and �P� ,−P��. Energy-conserving processes, which are the
relevant ones in the large time limit, lead to P= P�: momenta follow
a simple rotation in the center-of-mass frame, as shown by the
dashed circle.

FIG. 6. Scattering of two excitons with initial momenta
�P ,−P� and final momenta �P� ,−P�� in the center-of-mass frame.
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1

z − H
=

1

z − H0
+

1

z − H
V

1

z − H0
. �10�

For H0=�k�kCk
†Ck and V given by

V =
1

2 �
q�0

Vq �
k1,k2

Ck1+q
† Ck2−q

† Ck2
Ck1

, �11�

this leads us to write, at first order in the interaction,

�v�C−P�CP�e
−iHtCP

†C−P
† �v

� e−2i�Pt��P,P� + ��P,−P�� + �VP�−P + �VP�+P�

�
e−2i�P�t − e−2i�Pt

2�P� − 2�P
+ ¯ . �12�

This shows that, due to the quantum particle undistinguish-
ability, the effective scattering which rules the time evolution
of two elementary particles starting in state �P ,−P� and end-
ing in a different state �P� ,−P�� is made of two processes
which differ by a particle exchange,

�eff�− P� − P

P� P
� = VP�−P + �VP�+P = VQ + �VQ�. �13�

In the case of two fermions, this effective scattering re-
duces to VQ−VQ�, the minus sign being standard for process
associated to fermion exchange. This shows that the effective
scattering ruling the time evolution of two elementary fermi-
ons cancels for Q=Q�, i.e., for P� perpendicular to P, with in
addition P�= P in the case of energy-conserving processes.
Let us stress that this effective scattering sign change should
not be taken as a change from repulsion to attraction between
the particles at hand: this latter characteristic is fully linked
to the sign of the elementary scattering VQ in the Hamil-
tonian, not to the sign of the effective scattering ruling the
time evolution of two fermions, as obvious from the fact that
this effective scattering anyway appears as a square modulus
in the Fermi golden rule.

By contrast, the effective scattering of two elementary
bosons is given by VQ+VQ� so that such a cancellation does
not occur. The possible cancellation of the effective scatter-
ing ruling the time evolution of two elementary quantum
particles thus appears as a characteristic of the particle fer-
mionic nature. A memory of this fermionic cancellation is
going to show up in the case of excitons made of two free
fermions but above a momentum threshold only.

C. Effective scattering for two-fermion particles

We now turn to the time evolution of two Wannier exci-
tons made of linear combination of free fermion pairs. Let Bi

†

be the creation operator of one exciton in state i. This opera-
tor is such that �H−Ei�Bi

†�v=0. Due to the exciton compos-
ite nature, the scalar product of two-exciton states is given
by33

��mn��ij = ��m,i�n,j − �� n j

m i
�� + �m ↔ n� , �14�

where ��ij=Bi
†Bj

†�v and �� n j
m i � is the Pauli scattering for

fermion exchange in the absence of fermion interaction,
shown in Fig. 1.

To get the time evolution of the two-exciton state Bi
†Bj

†�v,
we use a procedure similar to the one we have used in the
case of elementary quantum particles. Equation �8� allows us
to write

��mn�e−iHt��ij = �
−�

+� dx

�− 2i��
e−it�x+iO+���mn�

1

x + iO+ − H
��ij .

�15�

Since the semiconductor Hamiltonian does not split in terms
of exciton operators as HX+VXX, we cannot use Eq. �10�.
Correlations betwen excitons then follow from a similar
equation in which enters the exciton creation operator,
namely,33

1

z − H
Bi

† = Bi
† 1

z − H − Ei
+

1

z − H
Vi

† 1

z − H − Ei
, �16�

where the operator Vi
†= �H ,Bi

†�−EiBi
† describes the interac-

tions of exciton i with the rest of the system. To go further,
we introduce the direct Coulomb scattering �dir� n j

m i � formally
defined as33

�Vi
†,Bj

†� = �
mn

�dir� n j

m i
�Bm

† Bn
†. �17�

Its precise value is given in Eq. �2� and its diagrammatic
representation is shown in Fig. 2�a�.

It is then easy to show that, to lowest order in the inter-
action,

��mn�
1

z − H
��ij �

1

z − Eij
��mn��ij +

1

�z − Emn��z − Eij�

��
p,q

��mn��pq�dir�q j

p i
� , �18�

where Eij =Ei+Ej. Using the scalar product of two-exciton
states given in Eq. �14�, we end with

��mn�e−iHt��ij � e−iEijt���m,i�n,j − �� n j

m i
�� + �m ↔ n��

+
e−iEmnt − e−iEijt

Emn − Eij
�eff� n j

m i
� , �19�

where the effective scattering ruling the time evolution of the
two excitons �i , j� is given by

�eff� n j

m i
� = ��dir� n j

m i
� − �in� n j

m i
�� + �m ↔ n�

�20�

with �in� n j
m i � being the in exchange Coulomb scattering de-

fined as
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�in� n j

m i
� = �

p,q
�� n q

m p
��dir�q j

p i
� , �21�

and shown in Fig. 3�a�.
The undistinguishability of the electron-hole components

of the excitons leads to an effective scattering made of four
terms instead of two as in the case of elementary quantum
particles: starting from the direct Coulomb scattering
�dir� −P� −P

P� P �, the three other scatterings correspond either to
exchange one electron or one hole as in the two exchange
Coulomb scatterings �in of Figs. 3�a� and 3�b�, or to ex-
change the two carriers, which is nothing but a �P�↔−P��
exchange in �dir as shown in Fig. 2�b�. Since a fermion ex-
change brings a minus sign, we end with an effective scat-
tering for the process of Fig. 6 made of two terms with a plus
sign and two terms with a minus sign:

�eff�− P� − P

P� P
� = �dir�− P� − P

P� P
� − �in�− P� − P

P� P
�

+ �P� ↔ − P�� , �22�

each of these four terms being actually made of two Cou-
lomb repulsions and two Coulomb attractions, as seen from
Eq. �2�. Due to such a complex structure, it is far from ob-
vious to physically guess the sign of the resulting effective
scattering and its possible cancellation.

We are going to show that, as for two elementary fermi-
ons, the effective scattering for the time evolution of two
excitons can cancel. However, for energy-conserving pro-
cess, this cancellation requires a difference between initial
momenta larger than a threshold value: for lower initial mo-
mentum difference, the exciton bosonic nature dominates:
the effective scattering, like for two elementary bosons,
keeps a constant sign for all scattering configurations.

Actually, due to a quite subtle interplay between the vari-
ous Coulomb contributions existing in this effective scatter-
ing, interplay which deeply depends on possible symmetry
between electron and hole, we even find that, when the
electron-to-hole mass ratio is close to 1/2, the effective scat-
tering stays essentially equal to zero in all directions, pro-
vided that the initial momentum difference has a very spe-
cific value. While the cancellation of the effective scattering
for a particular value of the scattering angle is quite standard
for elementary fermions, the possible cancellation of this ef-
fective scattering in all scattered directions is far more
subtle, being deeply linked to the exciton composite nature.
It is worth noting that the mass ratio 1/2 to have this some-
what magic cancellation essentially separates hydrogenlike
excitons �me�mh� from positroniumlike excitons for which
the electron and hole play a quite symmetrical role.

D. Various contributions to the effective scatterings

As seen from Eq. �20� and �22�, the effective scattering
ruling the time evolution of two excitons is made of two
direct terms and two exchange terms.

1. Direct terms

In previous works,36,37 we showed that the direct exciton-
exciton scattering �dir� −P� −P

P� P � in which excitons with mo-

menta P and P� are made with the same electron-hole pair,
can be written analytically in terms of the exciton momen-
tum transfer Q=P�−P. In the case of 2D ground-state exci-
tons for which �r ��0=e−2r/aX�8 /�aX

2 , where aX is the 3D
Bohr radius, this scattering reads, in aX

−1 unit for momentum
and �X=e2aX /L2 unit for scattering,

�dir�− P� − P

P� P
� � ��e

dir�Q�

=
2�

Q
�g��eQ� − g��hQ��2, �23�

where �e=1−�h=me / �me+mh� while g�q�= �1+q2 /16�−3/2.
This shows that ��e

dir�Q� reduces to zero for Q=0 and Q infi-
nite while it stays equal to zero for �e=1 /2, i.e., for equal
electron and hole masses. Such a cancellation can be physi-
cally understood by noting that the exciton composite nature
does not show up in a direct scattering so that excitons ba-
sically behave as two classical dipoles, these dipoles being
fully symmetrical when the electron and hole masses are
equal.

2. Exchange terms

By contrast, the in exchange scattering cannot be calcu-
lated analytically. Its most compact expression appears to
read36

�in�− P� − P

P� P
� � �in��eQ − �hQ�,− �eQ − �hQ�� .

�24�

The function �in�u ,v�, which does not explicitly depend on
the mass ratio, is precisely given by

�in�u,v� = �
q�0,k,�=�1

Vq��0�k +
v + q

2
�

���0�k −
v + q

2
��k +

u + �q

2
��0�

���k −
u + �q

2
��0� − �k −

u − �q

2
��0��

�25�

so that �in�u ,v�=�in�−u ,v�=�in�−u ,−v�.

3. Effective scattering

Since a �P�↔−P�� exchange in Eq. �5� amounts to
change Q into Q�, the effective scattering for excitons going
from states ��0 ,P�, ��0 ,−P� to states ��0 ,P��, ��0 ,−P��, ends
by reading as

�eff�− P� − P

P� P
� � ��e

eff�Q,Q��

= ���e

dir�Q� − �in��eQ − �hQ�,− �eQ

− �hQ��� + �Q ↔ Q�� , �26�

where Q and Q� are the momentum transfers defined in Eq.
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�5� in terms of the exciton initial and final momenta �P ,P��.
We have seen that, for equal electron and hole masses,

i.e., for �e=1 /2, the direct Coulomb scattering cancels. Due
to the symmetry properties of �in�u ,v�, the effective exciton-
exciton scattering then reduces to one term only

�1/2
eff �Q,Q�� = − 2�in��Q − Q��/2,�− Q − Q��/2�=− 2�in�P�,P� .

�27�

In the other limit, i.e., when the hole mass is infinite, �e is
equal to zero. Due to the symmetry properties of �in�u ,v�,
this effective scattering is then given by

�0
eff�Q,Q�� = ��0

dir�Q� − �in�− Q�,− Q��� + �Q ↔ Q��

=��0
dir�Q� − �in�Q,Q�� + �Q ↔ Q�� . �28�

III. POSSIBLE CANCELLATION OF THE EFFECTIVE
EXCITON-EXCITON SCATTERING

A. Previous work

In a previous work,36 we already calculated the in ex-
change Coulomb scattering in the particular case of initial
excitons having equal momenta in the laboratory frame. This
configuration corresponds to P=0, i.e., Q�=−Q. According
to Eq. �24�, this means that we already calculated

�in�Q,��h − �e�Q� = ��e

in �Q� . �29�

By contrast with the direct scattering which stays positive,
this in exchange scattering is negative for small Q but turns
positive when Q gets large. More precisely, for zero momen-
tum transfer, Q=0, i.e., when the two ground-state excitons
��0 ,0� stay in the same ��0 ,0� state, ��e

in �0� in 2D is equal to38

−�4�−315�3 /1024��−3.0 whatever the carrier masses are
while ��e

in �Q� turns positive for a momentum transfer Q�e

�0�

which slightly varies with �e,

��e

in �Q� = 0 for Q = Q�e

�0�. �30�

For infinite hole mass, this momentum transfer is equal to
Q0

�0��2.7.
In this previous work, we also calculated ��e

eff�Q ,Q�� for
P=0. Since P=0 corresponds to Q�=−Q, we thus also know

��e

eff�Q,− Q� � ��e

eff�Q� . �31�

This effective scattering was found to cancel for a momen-
tum transfer which slightly depends on mass ratio,

��e

eff�Q� = 0 for Q = Q�e

� . �32�

Q�e

� varies from Q1/2
� �3.1 to Q0

��3.9 when the hole mass
increases, the effective scattering ��e

eff�Q� staying very close
to zero for Q larger than Q�e

� . However, since energy-
conserving scattering when P=0 imposes P�=0, i.e., Q=0,
such a momentum transfer Q�e

� for cancellation of �eff is of
no physical relevance because it corresponds to process in
which energy is not conserved.

When P=0, the scattered state having the same energy as
the initial state corresponds to P�= P: it thus reduces to the

initial state, which makes the P=0 initial configuration not
so much of interest. In order to consider physically relevant
energy-conserving configurations, we must extend our previ-
ous calculations to finite initial momentum difference.

Since the direct Coulomb scattering is analytically known,
this means that we have to numerically calculate the in ex-
change Coulomb scattering for arbitrary initial momenta.
From it, we will then determine, for various scattered angles
	 and mass ratios �e, the value of the initial momentum
difference for which the effective scattering defined in Eq.
�26� cancels when P= P�, i.e., when energy is conserved. Let
us call P�e

�0��	� the P value for which such cancellation oc-
curs,

��e

eff�Q,Q�� = 0 for P = P� = P�e

�0��	� . �33�

The resulting 	 dependence of this half initial momentum
difference is given in Figs. 9 and 11 for infinite hole mass
and equal electron and hole masses. Let us now derive these
results more in details.

B. Infinite hole mass

Actually, our previous work36 in which we only consid-
ered P=0, is enough to get the effective scattering for a
general �P ,P�� configuration when the hole mass is infinite,
i.e., when �e=0. Indeed, the in exchange scattering in Eq.
�24� then reduces to �in�−Q� ,−Q�� which is nothing but
�0

in�Q��, according to Eq. �29�. Consequently, the effective
scattering, given in Eq. �28� reads as

�0
eff�Q,Q�� = ��0

dir�Q� − �0
in�Q�� + �Q ↔ Q��

=
1

2
��0

eff�Q� + �0
eff�Q��� . �34�

Due to Eq. �32�, this effective scattering obviously cancels
for Q=Q�=Q0

�. It also cancels for configurations having dif-
ferent momentum transfers, Q and Q� then being on both
sides of Q0

�. If we now restrict to processes in which energy
is conserved, Q2+Q�2=4P2, this cancellation occurs when
half the initial momentum difference P is larger than a
threshold value P0

� which precisely corresponds to equal mo-
mentum transfers Q=Q�=Q0

� so that this initial momentum
threshold corresponds to

P0
� = Q0

�/�2 � 2.77. �35�

Since P .P�=0 for Q=Q�, cancellation at threshold occurs
for scattering in the perpendicular direction �cos 	=0�. For P
larger than this threshold value P0

�, the angle 	 between P
and P� when cancellation occurs, decreases, the effective
scattering staying however small for all configurations. This
means that, for P� P0

�, sizeable scatterings exist in the
forward direction only �cos 	� �1�, i.e., 	��0 or ��. This
behavior is shown in Fig. 7, which gives the effective scat-
terings for three different values of P taken below, at and
above threshold, namely, P= P0

� /2, P0
� and 2P0

�. We in par-
ticular see that, for P=2P0

�, cancellation occurs for
cos 	�0.75.

Using Eq. �34�, it is possible to calculate the effective
scattering as a function of half the momentum difference P
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and the angle 	 between scattered momenta. In Fig. 8, the
effective scattering landscape for energy conserving configu-
rations is shown for a large range of P values. The heavy line
corresponds to zero effective scattering. Sections with planes
where P is constant give curves similar to the ones of Fig. 7.
Since the direct Coulomb scattering �dir is always positive
�see Eq. �23��, Fig. 8 shows how compensation between di-
rect and exchange Coulomb processes evolves to produce
cancellation. The �0

eff=0 heavy line separates the effective
scattering surface into two regions; when �0

eff�0, the ex-
change term dominates over the direct one as in the small
momentum limit.

In order to better characterize this cancellation effect, we
also show in Fig. 9 the curve P0

�0��	� �defined in Eq. �33��
where �0

eff cancels. Among all possible final states satisfying
energy and momentum conservations, this curve selects the
forbidden ones at first order in Coulomb process. In agree-
ment with Fig. 7, the minimum value of P0

�0��	� occurs at

threshold P0
�0��� /2�= P0

� for cos 	=0, while for 2P0
� it occurs

for cos 	� �0.75.

C. Equal electron and hole masses

We now turn to the other limit, i.e., equal electron and
hole masses. As seen from Eq. �27�, the effective scattering
in the forward direction, P=P�, reduces to −2�in�P ,P� which
is nothing but −2�0

in�P�, due to Eq. �29�. This effective scat-
tering is thus found to cancel for P equal to Q0

�0��2.7 �see
Eq. �30�� so that the momentum P1/2

�0� �	=0� for cancellation
of the effective scattering, defined in Eq. �33�, is equal to
Q0

�0�.
Through a numerical calculation of the scattering

�in�P� ,P� given in Eq. �25�, when energy is conserved, i.e.,
for P= P�, we can get the effective scattering �1/2

eff as a func-
tion of half the momentum difference P and scattering angle
	 and determine where it cancels when energy is conserved.
By comparing Figs. 8 and 10, we see that the behaviors of
��e=0

eff and ��e=1/2
eff for energy conserving configurations are

quite different. Most strikingly, the curve P1/2
�0� �	� for cancel-

lation, shown more in details in Fig. 11, has a curvature
opposite to the one for infinite hole mass, shown in Fig. 9:
scattering in the perpendicular direction, P� ·P=0, is found to
cancel for a P value P1/2

�0� �	=� /2��3.66 which is larger than
the value in the forward direction P1/2

�0� �	=0��2.7. By con-
trast, the minimum value of P�e=0

�0� �	�, when the hole mass is
infinite, is reached for 	=0.

Such different behaviors of P0
�0��	� and P1/2

�0� �	� can look
quite strange at first, because, from the behaviors of these
two extreme mass ratios, me /mh=0 and me=mh, we expect,
by continuity, to go through a value of �e=me / �me+mh� for
which P�e

�0��	� would stay constant and equal to zero when
changing the angle 	 between the initial and final state exci-
ton momenta: for half initial momentum difference equal to

FIG. 7. Effective scatterings ��e=0
eff in the case of infinite hole

mass, me /mh=0, for three different values of half the initial mo-
mentum difference P, namely, P0

� /2, P0
�, 2P0

�, where P0
� is the

threshold value of P above which the effective exciton-exciton scat-
tering can cancel.

FIG. 8. Effective scatterings ��e=0
eff for energy-conserving pro-

cesses as a function of half the initial momentum difference P and
the angle 	 between initial and scattered momenta when the hole
mass is infinite. The full lines correspond to constant ��e=0

eff , the
heavy one corresponding to ��e=0

eff =0.

FIG. 9. Initial half exciton momentum difference P�e=0
�0� �	� for

effective scattering cancellation as a function of the angle between
initial and scattered momenta when the hole mass is infinite. The
dashed line corresponds to the treshold value P0

��2.77 above
which cancellation can occur �see Eq. �35��.
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this constant value, the effective scattering would then stay
equal to zero in all directions.

Let us now determine the value of the electron-to-hole
mass ratio which separates these two different regimes of
curvature, in order to characterize more in details the magic
initial configuration having a zero effective scattering in all
directions.

D. Arbitrary mass ratio

We start from the general form of �eff� −P� −P
P� P � given in Eq.

�26� which, together with Eqs. �23� and �25�, gives the effec-
tive scattering as a function of the mass ratio �e and the
momentum transfers �Q ,Q��, these momentum transfers be-
ing related to the exciton initial and final momenta �P ,P��
through Eq. �5�. We again consider energy-conserving pro-
cesses, i.e., processes such that P= P�. The effective scatter-
ing then depends on the initial half momentum difference P,

the angle 	 between P and P� and the mass ratio �e. Let us
call it ��e

eff�P ,	�.
In order to better see if an initial state with a zero effec-

tive scattering in all scattered directions can exist, we first

look for values of the initial half momentum difference P̄,
and mass ratio �̄e, for which the effective scattering cancels
in the forward and perpendicular directions. This corre-

sponds to look for P̄ and �̄e such that

��̄e

eff�P̄,0� = ��̄e

eff�P̄,�/2� = 0. �36�

We find that this happens for P̄�3.3 and �̄e�0.32, which
corresponds to a hole mass value mh on the order of 2.08me.
Figure 12 shows the half momentum difference P�̄e

�0��	� for
effective scattering cancellation when the mass ratio is equal

to �̄e. We see that P�̄e

�0��	� is indeed equal to P̄ for 	=0 and

	=� /2 but does not stay exactly equal to P̄ when changing
	: this half momentum difference actually shows a very
small oscillation, crossing the P=3.33 value in four points
when cos 	 varies from −1 to +1. Although this oscillation is
very small, it actually rules out a far more striking behavior,
with an effective scattering staying exactly equal to zero for
all scattering angles 	.

In order to better characterize this fundamental collapse of
the effective exciton-exciton scattering, we have performed
calculations for values of �e very close to �̄e, namely,
mh= �2.08�0.08�me: the results are shown in Figs. 13 and
14, respectively. In both cases, we find that there are very
narrow ranges of P values for which scattering cancellation
occurs ��P / P�0.03�.

Of particular interest is the case mh=2me for which, when
the initial half momentum difference P is equal to P1/3

�0� �� /2�
�see Fig. 13�, the effective scattering stays essentially equal

FIG. 10. Effective scatterings ��e=1/2
eff for energy-conserving pro-

cesses as a function of half the initial momentum difference P and
the angle 	 between initial and scattered momenta when the elec-
tron and hole masses are equal. The full lines correspond to con-
stant ��e=1/2

eff , the heavy one corresponding to ��e=1/2
eff =0.

FIG. 11. Initial half exciton momentum difference P�e=1/2
�0� �	� for

effective scattering cancellation as a function of the angle between
initial and scattered momenta for equal electron and hole masses.

FIG. 12. Initial half exciton momentum difference P�e

�0��	� for
effective scattering cancellation as a function of the angle between
initial and scattered momenta when mh=2.08me, i.e., when
�e= �̄e=0.32. The dotted line, P=3.33, is to guide the eyes for the
weak oscillation of P�̄e

�0��	�, the value of P�̄e

�0��	� being exactly equal

to P̄�3.3 for cos 	= �0, �1�
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to zero for all scattered directions 	 between � /4 and 3� /4.
This rather large range of 	 values in which energy conserv-
ing scattering is forbidden, could possibly help to evidence
this highly nonintuitive fundamental collapse. We see that,
for this P value, nonzero scattering exists for cos 	 very
close to �1, i.e., in the forward direction only.

The mh /me�2.08 mass ratio, which fundamentally sepa-
rates two different regimes of curvature for P�e

�0��	�, can be
physically seen as the precise value which separates positro-
niumlike excitons with me�mh �Fig. 8� from hydrogenlike
excitons with me�mh �Fig. 10�.

It is clear that the cancellation of the exciton-exciton ef-
fective scattering requires exciton initial momenta far larger
than photon momenta, i.e., the momenta of photocreated ex-
citons. As a result, this quite remarkable collapse seems hard
to experimentally evidence in a direct way through excitons
created by resonant photons. Nevertheless, its existence

could have consequences in physical properties related to
exciton-exciton scatterings for systems having excitons with
high kinetic energy as possibly produced by nonresonant
photons.

For example to explain the rise time observed in time-
resolved luminescence of GaAs/AlGaAs/GaAs�001� 2D mul-
tiquantum well, the authors of Ref. 39 speculate that exciton-
exciton scattering plays a dominant role with respect to
dephasing effects linked to either disorder or acoustic
phonons. It is legitimate to then expect strongly different
behavior when such dominant mechanism is hampered by
the present cancellation effect.

We wish to stress that, although rather large, the half ini-
tial exciton momentum difference P�e

�0� for which scattering
cancels, stays below the exciton ionization threshold, for all
mass ratios considered here, as can be seen from Fig. 4.
Consequently, the asumption of excitons staying in their fun-
damental ground state, under which these calculations are
made, is fully valid.

The present work considers quasi-two-dimensional quan-
tum wells �L�aX� with hole-to-electron mass ratio mh /me
close to 2 �Fig. 13�. This is easily fulfilled in high quality
GaAs/AlAs/GaAs�001� with electron mass me=0.067 and
hole mass in the parallel direction mhh

� =0.110. The 3D Bohr
radius being aX=17.5 nm, the 2D Rydberg energy 4Ryd is on
the order of 12 meV while the ionization threshold for
center-of-mass energy is on the order of 7.8 meV �see Fig.
4�. Moreover, being the difference between the lowest
�n=0� and the first excited state �n=1�, for 2D excitons,
�E�3.55Ryd we can check that the exciton kinetic energy is
lower than the transition energy �E. Moreover, high-quality
samples are necessary to minimize dephasing induced by
interface disorder. A very accurate control of the sample tem-
perature is also needed to get rid of exciton-acoustic-phonon
interaction. A precise control of the heavy-light hole splitting
energy, induced by small difference in the lattice parameters
between GaAs and AlAs materials �compressive strain� is
also required. Note that this splitting must be added to the
quantum confinement energy �for GaAs the z masses are
mhh

z =0.530, mlh
z =0.08�.

All this tends to show that, altought the experimental ob-
servation of the exciton-exciton scattering cancellation is go-
ing to require a rather sophisticated tailoring of the sample as
well as nonlinear optical experiments designed in an unusual
way, the observation of such an unexpected effect which is
directly linked to the existence of fermionic components in
excitons, does not seem out of reach and seems to us a chal-
lenge of physical interest.

IV. CONCLUSION

Through the composite exciton many-body framework re-
cently proposed by Combescot and co-workers, we here
study the effective scattering ruling the time evolution of two
excitons at first order in Coulomb interaction �Born approxi-
mation� when these two excitons are in the same relative
motion state but have different initial momenta. We mainly
look for energy-conserving configurations in which this ef-
fective scattering cancels.

FIG. 13. Half initial exciton momentum difference P�e=1/3
�0� �	�

for cancellation of the effective scattering, as a function of the angle
between initial and scattered momenta when mh=2me.

FIG. 14. Half initial exciton momentum difference P�e

�0��	� for
cancellation of the effective scattering, as a function of the angle
between initial and scattered momenta when mh=2.16me.
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�i� We show that the possible cancellation of this effective
scattering is fundamentally due to the exciton composite na-
ture: such a cancellation always occurs for elementary fermi-
ons but never occurs for elementary bosons. In the case of
composite-boson excitons made of two fermions, cancella-
tion can occur but above a momentum threshold only.

�ii� The effective scattering ruling the time evolution of
two excitons shows a strong dependence on the electron-to-
hole mass ratio. For mh /me close to 2, which can be seen as
a boundary between hydrogenlike excitons for which
me�mh and positroniumlike excitons for which me�mh, we
find a quite remarkable cancellation of this effective

scattering over a large range of scattered directions,
	��� /4,3� /4� but a very narrow range of initial exciton
momentum difference, �P / P�0.03.
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